Unit Groups of Integral Finite Group Rings with No Noncyclic Abelian Finite Subgroups
نویسنده
چکیده
It is shown that in the units of augmentation one of an integral group ring ZG of a finite group G, a noncyclic subgroup of order p, for some odd prime p, exists only if such a subgroup exists in G. The corresponding statement for p = 2 holds by the Brauer–Suzuki theorem, as recently observed by W. Kimmerle.
منابع مشابه
On non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملSome combinatorial aspects of finite Hamiltonian groups
In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...
متن کاملFree Groups and Subgroups of Finite Index in the Unit Group of an Integral Group Ring∗
In this article we construct free groups and subgroups of finite index in the unit group of the integral group ring of a finite non-abelian group G for which every non-linear irreducible complex representation is of degree 2 and with commutator subgroup G′ a central elementary abelian 2-group.
متن کاملHow Abelian is a Finite Group?
A well known theorem of G. A. Miller [4] (see also [2]) shows that a p-group of order p" where n > v(v 1)/2 contains an Abelian subgroup of order p° . It is clear that this theorem together with Sylow's Theorem implies that any finite group of large order contains an Abelian p-group of large order . In this note we use simple number theoretic considerations to make this implication more precise...
متن کامل